SOLAR ENERGY TECHNOLOGY BREAKTHROUGH!

Wind Power

Showing posts with label Oil Spill. Show all posts
Showing posts with label Oil Spill. Show all posts

Thursday, July 3, 2008

Environmental protection using Biotechnology – An overview:




Environmental protection using Biotechnology – An overview:

A. The surroundings around us are termed as ‘environment’. Our environment includes the abiotic component (the non living) and biotic component (the living). The abiotic environment includes air, water and soil; and the biotic environment consists of all living organisms such as plants, animals and microorganisms. Environmental pollution broadly refers to the presence of undesirable substances in the environment which are harmful to man and other organisms. There has been a significant increase in the levels of harmful environmental pollution mostly due to direct or indirect human activities in recent past. The major sources of environmental pollution are industries, agricultural and other anthropogenic and biogenic sources etc. The pollutants are chemical, biological and physical in nature.

B. Controlling the environmental pollution and the conservation of environment and biodiversity and controlling environmental pollution are the major focus areas of all the countries around the world. In this context, the importance and impact of biotechnological approaches and the implications of biotechnology has to be thoroughly evaluated. There have been serious concerns regarding the use of biotechnological products and the impact assessment of these products due to their interaction with the environmental factors. A lobby of the environmentalists has expressed alarm on the release of genetically engineered organisms in the atmosphere and have stressed on thorough investigation and proper risk assessment of theses organisms before releasing them in to the environment. The effect of the effluents from biotechnological companies is also a cause of concern for everyone. The need of the hour is to have a proper debate on the safety of the use of the biotechnological products. The efforts are not only on to use biotechnology to protect the environment from pollution but also to use it to conserve the natural resources. As we all know that microorganisms are known natural scavengers so the microbial preparations (both natural as well as genetically engineered) can be used to clean up the environmental hazards.

C. Biotechnology is being used to provide alternative cleaner technologies which help to further reduce the hazardous environmental implications of the traditional technologies. Some of the well known examples and mechanisms are:

(i) Some fermentation technologies have some serious environmental implications. Various biotechnological processes have been devised in which all nutrients introduced for fermentation are retained in the final product, which ensures high conversion efficiency and low environmental impact.

(ii) In paper industry, the pulp bleaching technologies are being replaced by more environmentally friendly technologies involving biotechnology. The pulp processing helps to remove the lignin without damaging valuable cellulosic fibres but the available techniques suffer from the disadvantages of high costs, high energy use and corrosion. A lignin degrading and modifying enzyme (LDM) was isolated from Phanerochaete chrysosporum and was used, which on one hand, helped to reduce the energy costs and corrosion and on the other hand increased the life of the system. This approach helped in reducing the environmental hazards associated with bleach plant effluents.

(iii) In Plastic industry, the conventional technologies use oil based raw materials to extract ethylene and propylene which are converted to alkene oxides and then polymerized to form plastics such as polypropylene and polyethylene. There is always the risk of these raw materials escaping into the atmosphere thereby causing pollution. Using biotechnology, more safer raw materials like sugars (glucose) are being used which are enzymatically or through the direct use of microbes converted into alkene oxides.e.g. Methylococcus capsulatus has been used for converting alkene into alkene oxides.

(iv) Bioremediation is defined as ‘the process of using microorganisms to remove the environmental pollutants where microbes serve as scavengers. The removal of organic wastes by microbes leads to environmental cleanup. The other names/terms used for bioremediation are bio-treatment, bio-reclamation, and bio-restoration. The term “Xenobiotics” (xenos means foreign) refers to the unnatural, foreign and synthetic chemicals such as pesticides, herbicides, refrigerants, solvents and other organic compounds. The microbial degradation of xenobiotics also helps in reducing the environmental pollution. Depending on the method followed to clean up the environment, the bioremediation is carried out in two ways:

(a) In situ bioremediation – involves a direct approach for the microbial degradation of xenobiotics at the site of pollution which could be soil, water etc. The in situ bioremediation is generally used for clean up of oil spillages, beaches etc.;

(b) Ex-situ bioremediation - In this the waste and the toxic material is collected from the polluted sites and the selected range of microorganisms carry out the bioremediation at designed place. This process is an improved method over the in situ bioremediation method.

(v) Pseudomonas which is a soil microorganism effectively degrades xenobiotics. Different strains of Pseudomonas that are capable of detoxifying more than 100 organic compounds (e.g. phenols, biphenyls, organophosphates, naphthalene etc.) have been identified. Some other microbial strains are also known to have the capacity to degrade xenobiotics such as Mycobacterium, Alcaligenes, Norcardia etc.

D. In recent years, efforts have been made to create genetically engineered microorganisms to enhance bioremediation. This is done to overcome some of the limitations and problems in bioremediation. These problems are: a) Sometimes the growth of microorganisms gets inhibited or reduced by the xenobiotics. b) No single naturally occurring microorganisms has the capability of degrading all the xenobiotics present in the environmental pollution. c) The microbial degradation is a very slow process. d) Sometimes certain xenobiotics get adsorbed on to the particulate matter of soil and thus become unavailable for microbial degradation.

E. As the majority of genes responsible for the synthesis of enzymes with biodegradation capability that are located on the plasmids, the genetic manipulations of plasmids can lead to the creation of new strains of bacteria with different degradative pathways. Well known example of genetic manipulations of plasmids is development of ‘Superbug’, which is used for degrading a number of hydrocarbons of petroleum simultaneously such as camphor, octane, xylene, naphthalene etc.

F. We all know that, carbon dioxide (CO2) is the main cause of green house effect and rise in the atmospheric temperature. There is a steady increase in the CO2 content due to continuous addition of CO2 from various sources particularly from industrial processes. It is very clear that the reduction in atmospheric CO2 concentration assumes significance. Biotechnological methods have been used to reduce the atmospheric CO2 content at two levels:

(a) Photosynthesis- Plants utilize CO2 during the photosynthesis which reduces the CO2 content in the atmosphere;

(b) Biological Calcification- Certain deep sea organisms like corals, green and red algae store CO2 through a process of biological calcification. As the CaCO3 gets precipitated, more and more atmospheric CO2 can be utilized for its formation.

G. The sewage is treated to get rid of these undesirable substances by subjecting the organic matter to biodegradation by microorganisms. The biodegradation involves the degradation of organic matter to smaller molecules, such as CO2, NH3, PO4 etc., and requires constant supply of oxygen. The process of supplying oxygen is expensive, tedious, and requires a lot of expertise and manpower. These problems are overcome by growing micro-algae in the ponds and tanks where sewage treatment is carried out. The algae release the O2 while carrying out the photosynthesis which ensures a continuous supply of oxygen for biodegradation. The algae are also capable of adsorbing certain heavy toxic metals due to the negative charges on the algal cell surface which can take up the positively charged metals. The algal treatment of sewage also supports fish growth as algae are a good source of food for fishes.

H. The environmental impact assessment system requires proponents to foresee possible environmental impacts when a development project is being planned, and to conduct an environmental assessment. However, debate continues on exactly what kinds of environmental protection measures are needed and how they should be integrated into a given project to achieve desirable environmental results. Actions to deal with global warming and to prevent ozone layer depletion are gaining momentum, but currently available technologies may not be enough to meet the required targets. Technological advances are needed in order to make progress in solving these issues, as well as with the problem of dioxins. New developments are also needed in technologies for pollution removal and environmental restoration, in cases where environmental pollution has already been generated or is already accumulating in the environment.

Environmental biotechnology – serving the future

Like white biotechnology, environmental biotechnology, often referred to as “grey biotechnology”, also focuses on sustainability. For instance, environmental biotechnology deals with the treatment of sewage water, the purification of exhaust gas or the decontamination of soils or ground water using specific microorganisms.

The use of organisms for the removal of contamination or pollutants is generally referred to as bioremediation. Originally, bioremediation was mainly used in cleanup operations, including the decomposition of spilt oil or slagheaps containing radioactive waste. In addition, bioremediation is also the method of choice when solvents, plastics or heavy metals and toxic substances like DDT, dioxins or TNT need to be removed.



Bioadsorption processes using newly developed bioadsorbers made from renewable materials are currently being developed. These adsorbers function as ion exchangers and are used in the elimination and disposal of toxic heavy metals. The industrial use of mineral resources leads to the drastic accumulation of these pollutants in the biosphere. The new bioadsorbers are used for the elimination of heavy metals and radionuklids from industrial wastewater, ore mine wastewater, seepage water from dumpsites or wastewater from nuclear power stations.

Saturday, April 26, 2008

Oil Spill and its adverse effects on marine bio-system and environment:


Oil Spill and its adverse effects on marine bio-system and environment:

Oil is the most common pollutant in the oceans. More than 3 million metric tons of oil contaminates the sea every year. The majority of oil pollution in the oceans comes from land. Runoff and waste from cities, industry, and rivers carries oil into the ocean. Ships cause about a third of the oil pollution in the oceans when they wash out their tanks or dump their bilge water. It is an unfortunate by-product of the storage and transportation of oil and petroleum is the occasional spill. Marine oil spill is a serious consequence of off-shore oil drilling and its oceanic transportation. Spill control firms specialize in the prevention, containment and cleanup of industrial oil spills.

A. The major spills of crude oil and its products in the sea occur during their transport by oil tankers, loading and unloading operations, blowouts, etc. When introduced in the marine environment the oil goes through a variety of transformation involving physical, chemical and biological processes. Physical and chemical processes begin to operate soon after petroleum is spilled on the sea. These include evaporation, spreading, emu1sification, dissolution, sea-air exchange and sedimentation. Chemical oxidation of some of the components of petroleum is also induced in the presence of sunlight. The degraded products of these processes include floating tar lumps, dissolved and particulate hydrocarbon materials in the water column and materials deposited on the bed.

Biological processes though slow also act simultaneously with physical and chemical processes. The important biological processes include degradation by microorganisms to carbon dioxide or organic material in intermediate oxidation stages, uptake by large organisms and subsequent metabolism, storage and discharge.

B. Crude oil and its products are highly complex mixtures. Since the fate of petroleum in the marine environment depends on the composition, a preliminary knowledge of major components and types is necessary for understanding the fate of petroleum when spilled on water. The approximate composition of an average crude oil is considered as :

Normal Type -

Gasoline (C5 - C10 ) 30%; kerosene (C10 -C12 ), 10%; light distillate oil (C12 - C 2 0), 15%; heavy distillate oil (C20 C4 0), 25% residium oil ( >C40), 20%,

By molecular type -

Paraffins (alkanes), 30%; naphthenes (cycloalkanes), 50% aromatics, 15% nitrogen, sulphur and oxygen containing compounds (NSO) 5%.

(a) Spreading - Spreading of crude oil on water is probably the most important process following a spill. Apart from chemical nature of oil, the extent of spreading is affected by wind, waves and currents. Under the influence of hydrostatic and surface forces, the oil spreads quickly attaining average thickness of less than 0.03 mm within 24 h. Once a spill has thinned to the point that surface forces begin to play an important role, the oil layer is no longer continuous and uniform but becomes fragmented by wind and waves into islands where thicker layers of oil are in equilibrium with thinner films rich in surface active compounds.

(b) Evaporation - Evaporation and dissolution are the major processes degrading petroleum crude when spilled on water. The composition of oil, its surface area and physical properties, wind velocity, air and sea temperatures, turbulence and intensity of solar radiation, all affect evaporation rates of hydrocarbons. Evaporation alone will remove about 50% of hydrocarbons in an "average" crude oil on the ocean's surface. Loss of volatile hydrocarbons increases the density and the kinematic viscosity of oil. As more volatile hydrocarbons are lost, the viscosity of the resulting oil increases and this results in breakup of slick into smaller patches. Agitation of these patches enhances incorporation of water due to increased surface area.

(c) Photo-oxidation - The natural sunlight in the presence of oxygen can transform several petroleum hydrocarbons into hydroxy compounds such as aldehydes and ketones and ultimately to low molecular weight carboxylic acids, As the products are hydrophilic, they change the solubility behaviour of the spill.

(d) Dispersion - Dispersion is οil-in-water emulsion resulting from the incorporation of small globules of oil into water column. Oil begins dispersing immediately on contact with water and is most significant during the first ten hours or so.

(e) Dissolution - Dissolution is another physical process in which the low molecular weight hydrocarbons as well as polar non-hydrocarbon compounds are partially lost from the oil to the water column.

(f) Degradation – Bio-degradative processes influencing fate of petroleum in aquatic environment include microbial degradation, ingestion by zooplankton, uptake by aquatic invertebrates and vertebrates as well as bio-turbation. Microorganisms capable of oxidising petroleum hydrocarbons and related compounds are widespread in nature. The rate of microbial degradation varies with the chemical complexity of the crude, the microbial populations and many of the environmental conditions.

C. Effects of petroleum crude on marine bio-system: The biological effects of oil include the possibility of

(a) Hazards to man through eating contaminated seafoods,

(b) Decrease of fisheries resources or damage to wild life such as sea birds and marine mammals,

(c) Decrease of aesthetic values due to unsighty slicks or oiled beaches,

(d) Modification of marine ecosystems by elimination of species with an initial decrease in diversity and productivity and

(e) Modification of habitats, delaying or preventing re-colonization.

When an oil spill occurs, many factors determine whether the spill will cause heavy, long lasting biological damage, comparatively little or no damage or some intermediate degree of damage. Thus for instance, if a spill occurs in a small confined area so that the oil is unable to escape, damage will be greater for a given volume and type of oil spilled than if the same volume was released in a relatively open area.

In the open sea the possible impact on biota can be on phytoplankton, zooplankton, benthos, fishery, birds, mammals, etc. whereas in coastal waters the impacts will also be on inter-tidal fauna, aquaculture, seaweeds and mangroves.

D. Oil Spill Control - Oil spills can occur when there is a problem with an oil well, when a pipeline ruptures or leaks or when there is a transportation accident. Since conditions are different with each spill, different methods of spill control may be used.

Some of the tools used to control oil in a spill include booms, which are floating barriers used to clean oil from the surface of water and to prevent slicks from spreading, skimmers which use pumps or vacuums to remove oil as it floats on water and sorbents which absorb oil when they are placed in a spill area.

Sometimes chemicals called dispersants are used to break down oil and move it from the top of the water. Moving the oil in this way keeps it from animals that live at the surface of the water and allows it to eventually be consumed by bacteria.

A process called bioremediation may be used to accelerate the process of biodegradation of the oil after a spill. In this process, bacteria or other microbes are introduced to the environment to help oxidize the oil. Unfortunately, this process can work slowly and is not very useful for large spills.

Occasionally the slick caused by a spill is removed through a controlled burn. Burning only works under certain wind and weather conditions.

Oil spill control on land is often conducted manually. Scooping, cleansing and scraping of the rocks and sand is performed until the oil has been removed.