SOLAR ENERGY TECHNOLOGY BREAKTHROUGH!

Wind Power

Monday, May 26, 2008

‘Clean Coal Technology (CCT)’ – methods to remove pollutants from coal.


‘Clean Coal Technology (CCT)’ – methods to remove pollutants from coal.

Carbon dioxide from burning coal is the main focus of attention today, since it is implicated in global warming, and the Kyoto Protocol requires that emissions decline, notwithstanding increasing energy demand.

A. Capture & separation of Carbon dioxide - A number of means exist to capture carbon dioxide from gas streams, but they have not yet been optimised for the scale required in coal-burning power plants. The focus has often been on obtaining pure CO2 for industrial purposes rather than reducing CO2 levels in power plant emissions. Capture of carbon dioxide from flue gas streams following combustion in air is expensive as the carbon dioxide concentration is only about 14% at best. This treats carbon dioxide like any other pollutant and as flue gases are passed through an amine solution the CO2 is absorbed. It can later be released by heating the solution. This amine scrubbing process is also used for taking CO2 out of natural gas. There is an energy cost involved. Captured carbon dioxide gas can be put to good use, even on a commercial basis, for enhanced oil recovery. Injecting carbon dioxide into deep, unmineable coal seams where it is adsorbed to displace methane (effectively: natural gas) is another potential use or disposal strategy.

B. Coal arriving at a power plant contains mineral content that needs to be removed, in order to make it clean, before it is burnt. A number of processes are available to remove unwanted matter and make the coal burn more efficiently.

(a) Coal cleaning by washing - Coal washing involves grinding the coal into smaller pieces and passing it through a process called gravity separation. One technique involves feeding the coal into barrels containing a fluid that has a density which causes the coal to float, while unwanted material sinks and is removed from the fuel mix. The coal is then pulverised and prepared for burning.

(b) Gasification of coal – The Integrated Gasification Combined Cycle (IGCC) plant is a means of using coal and steam to produce hydrogen and carbon monoxide (CO) which are then burned in a gas turbine with secondary steam turbine (ie combined cycle) to produce electricity.

Coal gasification plants are favoured by some because they are flexible and have high levels of efficiency. The gas can be used to power electricity generators, or it can be used elsewhere, i.e. in transportation or the chemical industry. In Integrated Gasification Combined Cycle (IGCC) systems, coal is not combusted directly but reacts with oxygen and steam to form a "syngas" (primarily hydrogen). After being cleaned, it is burned in a gas turbine to generate electricity and to produce steam to power a steam turbine. Coal gasification plants are seen as a primary component of a zero-emissions system. However, the technology remains unproven on a widespread commercial scale.

(c) Removing pollutants from coal - Burning coal produces a range of pollutants that harm the environment: Sulphur dioxide (acid rain); nitrogen oxides (ground-level ozone) and particulates (affects people's respiratory systems). There are a number of options to reduce these emissions:

(i) Sulphur dioxide (SO2) - Flue gas desulphursation (FGD) systems are used to remove sulphur dioxide. "Wet scrubbers" are the most widespread method and can be up to 99% effective. A mixture of limestone and water is sprayed over the flue gas and this mixture reacts with the SO2 to form gypsum (a calcium sulphate), which is removed and used in the construction industry.

(ii) Nitrogen oxides (NOx) - NOx reduction methods include the use of "low NOx burners". These specially designed burners restrict the amount of oxygen available in the hottest part of the combustion chamber where the coal is burned. This minimises the formation of the gas and requires less post-combustion treatment.

(iii) Particulates emissions - Electrostatic precipitators can remove more than 99% of particulates from the flue gas. The system works by creating an electrical field to create a charge on particles which are then attracted by collection plates. Other removal methods include fabric filters and wet particulate scrubbers.

No comments: